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The centerpiece of the developer tools included with Mac OS X is the Xcode 
application. Xcode is a full-featured IDE for developing Mac applications and 
includes a world-class code editor, a graphical debugger, and integrated 
Objective-C, C, and C++ compilers. Xcode has intimate knowledge of the 
Cocoa frameworks that power Mac OS X, and it is even able to identify bugs by 
analyzing the code you write — without running the application. 

I did my internship in the infrastructure team. This team is at the origin of the 
development of the new version of Xcode. They are responsible for the 
architecture of the IDE (Integrated Development Environment) and providing 
other teams with an easy and robust way to integrate their work and features 
into the IDE.

My first project consisted in improving an existing feature, Open Quickly. With 
that being done, I explored the concept of working sets and developed a 
prototype to prove the feasibility of this project. Some work still needs to be 
done but I hope to see it shipped in the future.
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Open Quickly

There are many tools to search for content in a project. In addition to the 
standard find and replace in the editor, Open Quickly works differently because 
it looks only for files and symbols (i.e classes and methods names) in your 
project. The purpose was make navigation easy throughout a project : instead 
of looking for the file you want to edit in the project navigator (the list of all 
your files in the left of the editor), you launch Open Quickly and you write the 
name of the file you want to open. This is very convenient when working on 
large projects where there are literally thousands of files.

To give a clear overview of the problem, we have the input of the user (a few 
letters, like ‘navMF’) and a list of all the symbols and files in the project, like 
‘NavigatorMainFile.h’, ‘NavigatorOtherFile.h’, ‘Foo.h’, ‘main()’, ‘myFunction()’, ... 
We need to present to the user the list of symbols and files that match his 
input, and sort them by relevance. The user will then choose from the list the 
one he was looking for and it will open in the editor. Of course, we try to show 
at the top of the list what we think the user will click on. The rank of the result 
selected by the user is a good indicator of performance.
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In the previous version of Open Quickly, the search was done by prefix. An 
input like ‘navMF’ would not have brought any results. So if you were looking 
for the file “NavigatorMainFile.h” you would typically have had to type in 
“NavigatorMa” to bring this result to the first position in the list (because of 
NavigatorOtherFile.h that could be in the first position too if you just input 
‘Navigator’). Open Quickly doesn’t parse the code to know the symbols and 
method names in the code, it takes advantage of many existing tools 
(integrated debugger, ...) instead.

My work consisted in implementing fuzzy matching in Open Quickly, so that 
you need to write a fewer number of letters. In that case for instance, “navMF” 
would work to find the file that you want. I used a version of the Levenshtein 
distance that I modified to sort the symbols and filenames.

The Levenshtein Distance

The Levenshtein distance (LD) is a measure of the similarity between two 
strings, which we will refer to as the source string (s) and the target string (t). It 
was named after the Russian scientist Vladimir Levenshtein, who devised the 
algorithm in 1965. The distance is the number of deletions, insertions, or 
substitutions required to transform s into t. For example, if s is "test" and t is 
"test", then LD(s,t) = 0, because no transformations are needed. The strings are 
already identical. The greater the Levenshtein distance, the more different the 
strings are.

Example : If s is "test" and t is "tent", then LD(s,t) = 1, because one substitution 
(change "s" into "n") is sufficient to transform s into t. 

The Levenshtein distance algorithm has been used in: spell checking, speech 
recognition, DNA analysis, plagiarism detection, ... to mention just a few of 
them.

Algorithm

The idea of the algorithm is that the Levenshtein distance can be computed 
recursively. For the ease of the explanation, let’s denote by s[0..i] the substring 
of s starting at index 0 with i+1 characters (= characters 0 to i) and by s[i] the 
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character at index i. Let n be the length of s and m be the length of t. 
Computing the Levenshtein distance of 2 strings is done with dynamic 
programming, and runs in time O(nm).

Changing s[0..i] into t[0..j] can be done

- either by deleting s[i] (cost : 1 operation, the deletion) and then recursively 
change s[0..i-1] into t[0..j]

- or by adding t[j] at the end of s[0..i] and recursively change s[0..i] into t
[0..j-1] (cost : 1 operation, the addition)

- or by substituting s[i] by t[j] and recursively change s[0..i-1] into t[0..j-1] 
(cost : 0 or 1, the substitution, depending if s[i] = t[j])

The operation chosen is the one that minimizes the total number of operations.

We will have a matrix d of size m+1 * n+1 where at the end of the algorithm,    
d[i, j] = LD(s[0..i], t[0..j]) (this can actually be the loop invariant)

For i = 0 to m and j from 0 to n,
d(i+1, j+1) = min(d[i+1, j] + 1, d[i, j+1] +1, d(i, j) + cost)
where cost = 1 if s[i+1] ≠ t[j+1] else 0

When the algorithm terminates, d(m, n) contains the Levenshtein distance 
between s and t.

Adaptation of the Levenshtein distance to our problem

The algorithm described in the previous section is robust and pretty fast, but 
the Levenshtein distance is not well suited to our problem. Let us look at our 
example to see why : the target is NavigatorMainFile.h, we also have Foo.h. If 
we write nmf.h, we are at distance 3 of Foo.h (making 3 substitutions) but we 
are at distance 14 of what we have in mind. We understand that substitutions 
must be more costly than addition of letters. Furthermore the capital letters are 
more representative than the other letters so we want them more expensive to 
add than the other letters.

The Levenshtein distance works very well in spell checking because in that case 
you get a word almost right and you need to make one or two changes, not 
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really more. Here we try to find a way to get the user to write as few letters as 
possible to get him to what he has in mind. 

We came with a handful of criteria and we changed the +1 cost of the 
Levenshtein algorithm by different parameters, among which

- In the case where the target is constituted of upper and lower characters, we 
want to penalize the capital case characters in the input that we have to 
substitute or delete more than if the target was only in lower case.

for the target ‘afile.h’, the input ‘aBc’ would be less relevant than 
‘abc’. By doing that, we want to say that when the user writes a capital 
letter, he really knows that the letter in the target will be capitalized. 
Filenames are usually made of many words and stringed together as in 
“OpenQuicklyDataSource.h”.

- when the user writes consecutive letters we want to give a bonus to targets 
that have matching letters in consecutive order too.

for input ‘foo’, ‘fooa.h’ would be more relevant than ‘foao.h’ (though 
they all need one addition)

There are about 15 parameters based on capital letters, prefixes, 
punctuation, ...

Another feature I have introduced is the memorization of the previous entries. 
The system keeps an history of the inputs and it will give a better score to 
entries that you were looking for. The memorization works in two ways, it 
records what are the inputs that lead to the choices of the user, and what are 
the most common choices.

Calibration of the parameters

Because there are many parameters (almost 20) and that the score function 
used to rank the results is non-linear (mainly because the Levenshtein distance 
is calculated recursively by taking the minimum of Levenshtein distances, and 
that the min() function is non-linear) it is not easy to find the right parameters. 
It is not so easy neither to write some tests. We would like to say “if we have 
this input, then this result must come before this one”, but because there are 
many parameters writing enough test cases is difficult.
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The approach I took was to collect data from users in conjunction with writing a 
first draft of the new open Quickly version. Everybody in Xcode uses Open 
Quickly many times a day, so I have first set default parameters to the 
Levenshtein function, then released it internally with a little piece of code that 
dumped together with the input what were the first 50 results by relevance and 
on which one the user clicked, i.e which one was of interest. I asked everybody 
after a few weeks to send me their data file and it helped me calibrate Open 
Quickly much better.

That being done, I developed a tool that performs some statistical analysis, for 
a given vector of parameters, of the data I get. I can see how many times the 
most relevant result was the one that the user selected, what is the average 
rank of the selection of the user, ... I first tweaked the parameters manually to 
obtain better performance. I have also implemented a genetic algorithm to find 
a better solution but it took some time to make it work and the results were no 
better than the ones I had achieved manually. Having a tool that makes it 
possible to change the parameters easily and see at the same time what are the 
statistics we get out of these parameters was a great asset.
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This chart shows, in percentage, how many results are in the n first results 
given back. For instance, 75% of the time, the choice of the user appears in our 
top 4 (after calibration), but it was in our top 9 before using our calibration 
tool.

Defuzzification

When the search in Open Quickly was done by prefix, it would show only words 
that start with the user’s input and sort the results by increasing length. With 
the work I have done, all the symbols in a project are given a score and we 
show the first 50 results. But if the user enters a long input, many of our results 
will be totally irrelevant. We decided to show only results that contain all the 
letters in the input, in the same order.

Before defuzzification, writing ‘date’ would bring up ‘NSDate’ and ‘NSData’ in 
the results, but after it shows only NSDate. This is a bit regrettable because it 
would allow the user to make some mistakes in the input and yet find what he 
wants, but the cases like NSDate/NSData are rare after all and if the user makes 
some mistakes (which is rare with a keyboard) then he is likely to correct them. 
Plus if showing NSData when the user writes NSDate is a pretty cool feature, 
showing things that are too different in the list is not a good idea, it makes the 
list of results dirty. And because the defuzzification (in time O(n+m)) 
invalidates a lot of results before computing the modified Levenshtein distance 
(in time O(n * m)), the algorithm is faster. We could have said that we keep 
results where we don’t need more than 1 suppression/substitution of the user’s 
input letters but making the feature fast was more important.

This is how I improved Open Quickly. I got a lot of positive feedback on this. 
Let’s now move on to my long term project this summer, which is exploring the 
concept of Working Sets.
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Working Sets

Let’s talk about the concept of working sets, from what problematic it stems, 
go over some solutions we first thought of before dwelling on the answer we 
came up with to solve the problem. This will show how the thought process we 
went through.

Problematic

At any given time you are working on something and generally you have a 
specific goal. You may be fixing a bug or implementing a new feature or 
refactoring a bit of code to clean things up. The set of stuff relevant to what 
you're working on is specific to the task at hand. As you work you are finding 
the stuff you need to change by browsing your project, navigating to files 
through various relationships or doing batch searches.

Sometimes you get distracted from the task at hand and work on something 
else for a while, and later you go back to what you're working on. While you're 
working on other things, you're looking at different stuff and making changes 
to other things. When you get back to the first task, you may have lost your 
context. Sometimes the stack of discrete things you're working on gets deeper. 
You may work on one task on and off for a long time while many shorter-lived 
tasks come and go. Working Sets give you a way to let Xcode know what you're 
working on and to allow it to keep track of the context for each separate task.
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In Xcode, files are accessible via the “project navigator”, which is a list of files 
and folders commonly used in most of the IDEs. This structure is very 
convenient to use most of the time when you work on small projects, but a 
bigger project can be made of hundreds of source files. The code is made of 
“bricks”, so there is one folder per feature and the source files related to the 
feature are placed in this folder.

However, it is not uncommon to work on files that are used in different 
features. For instance, there are some “global” files, that are used almost 
everywhere (the editor, the file that knows about the status of the main window 
and of all the files in the project, ...). If your two files are far apart from each 
other in the project navigator, you will need to scroll every time you navigate 
from one file to the other. So Working Sets keep grouped the files you want to 
work on.

A step toward a solution

Many attempts have been made to implement this concept, in Xcode 3 or in 
other IDEs though none of them was efficient and easy to use. Xcode allows this 
sort of thing today by explicitly creating and managing bookmarks. But people 
don't generally use this feature. Instead they find the stuff they need potentially 
over and over each time they need it. But a smart system for managing working 
sets can do a lot of the tracking automatically, and can therefore provide an 
easy way to get to the stuff for a given task that you've already found while 
working on it.

A working set is basically a collection of files. You can have as many working 
sets as you have ongoing tasks. One solution would be that whenever you start 
a new task, you can create a working set, then you add files to it manually. But 
we think that this would not work because all manual approaches were not used 
by the user. A manual approach involves some extra work for the user, so we 
decided to have something completely automatic. Working sets will be useful to 
the extent that the user does not usually have to manually manage their 
content. We believe that Xcode can watch what you are doing as you work and 
can automatically populate the Working Sets with the things you are working 
on.

Concept

When you are working on a small task A, you usually find yourself playing with 
a handful of files, the most recently opened ones. Changing task to task B 
suddenly doesn't change this list of most recent files, though if task B is not 
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new to you, the system should recognize it and retrieve the files you were 
working on at that time.

Recording the history of navigation will gradually populate a graph of 
navigation between files (the vertices), the edges being the probability of 
transition from one file from another. Based on these probabilities plus the 
recent history, the system must be able to suggest a reasonable list of "next" 
files to the user.

Based on further statistical analysis, the system can discover clusters of files 
that are all very likely to be used together. We call these clusters working sets.

Incremental vs Static

Let’s say that we came up with a system that is able to understand and separate 
what tasks you work on, i.e that can do some pretty good clustering on the 
transitions probabilities graph. This is somehow a static way of thinking. It 
works well but is not ensured to work well “on the fly”, dynamically. To 
understand why, we need to have the typical workflow of a user in mind. The 
user will work on one task, switch to another, switch back, ... Barring that a 
static approach can be very time consuming, it doesn’t ensure any stability over 
time. If the system recomputes the list of clusters every time you navigate from 
one file to another, very likely there are some files that were in your working 
sets and that will disappear after a few steps of navigation, then reappear, ... 
The behavior is not predictable, though we can think of algorithms to smoothen 
this. Instead we chose to use an incremental approach, built on our algorithms 
to compute the list of clusters right from scratch.

Model

In most of the research papers I have read before starting my project, clustering 
is done by using matrices tricks, such as SVD (Single Value Decomposition). 
Most of the time the size or the number of the clusters is known beforehand, 
and an element cannot be in more than one cluster. This doesn’t hold here. We 
need to device a system where a file can be part of many different Working Sets, 
and that is easily mutable into a system that allows for incremental changes.

As I said previously, we started to design an algorithm that shows what are the 
files you are most likely to go next, knowing what file you are currently on. We 
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did this at a time where we didn’t know yet what our final idea would be. There 
is a menu in Xcode that says what are the recent files, what are the superclasses 
and children of the classes in a file, ... and we first wanted to have a “most 
relevant files” menu, or something similar to that. This feature and the 
algorithms involved finally appeared to be of paramount importance in the 
clustering process. Let us describe how we compute the list of files relevant to 
another one _in other terms we will define here the distance we use in the files 
set_ before talking about how our clustering method works.

Defining a distance in the files set - Files relevant to another

In the source code of Xcode, we made some changes to record all the 
transitions from one file to another. It is not hard to create a graph where the 
vertices are the files and the edges are valued with the probability to go from 
one file to another. Actually, in the real world, nothing is as easy as it is to say 
it, for example, after finding where the navigation occurs in the source code 
and where you have to add your lines, you should pay attention to what the 
user does, like renaming a file.

For each vertex, we have a table of all the connected vertices. If we were to 
associate each vertex with a float number (the probability), every time there is a 
new transition from the file to another you have to update the probabilities of 
all associated vertices. This is not a good model (time : O(n) to update all the 
probabilities, where n is the number of files in your project). Instead, we 
associated every edge with an integer value, the number of times you go from 
one file to another. Every file also has a ‘total’ value that sums all the edges 
values. When you record a new transition, you add one to the total and to the 
edge. If you want to know the probability you just need to divide one by the 
other, in time O(1).

There are many ways, given the matrix of all the probabilities of transition from 
one file to another, to define the distance between 2 files.
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Let’s consider this graph and see how we can define the distance between A 
and D. The first idea was to add all the probabilities of all the possible paths 
from A to D. This would result in adding all the probabilities between the 
arrows in the graph above : D can be relevant to A because B is relevant to A 
and D is relevant to B for example, so this idea is pretty intuitive.

We would like to say something like : score = Pa,d + Pa,b * Pb,d + Pa,c * Pc,d

and the distance will be any decreasing function of the score. But in reality, the 
graph of navigation can contain loops, and it is more likely to look like

In that case,

score = Pa,d + Pa,b * Pb,d + Pa,c * Pc,d + Pa,b * Pb,a * score + Pa,d * Pd,a * 
score + Pa,c * Pc,b * (Pb,d + Pb,a * score) + ...
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We end up with a bigger equation, and yet we consider here only 4 vertices.

If we call M the matrix of probabilities of transitions, then the score we are 
looking for is (I + M + M^2 + ... + M^n + ...) at row A and column D.

Indeed, we have by definition Ma,d = Pa,d, and (M^2)a,d = probability to be on 
file D, starting from file A, with a path of length 2. Because on every line the 
numbers in M are between 0 and 1 and their sum is 1, M has an (infinite) norm 
of 1 and we know the sum will not converge : M(1) = (1) (a vector with only 
ones) so (I + M + M^2 + ... + M^n) = (n+1) * (1) and thus the sum doesn’t 
converge globally but may converge on certain coefficients. A solution would be 
to calculate partial sums and to take the result as granted for the distance, it 
should give a relevant score function.

Another way to view the problem was to see what is the biggest cut in the 
graph that we can make, with A as the source and D as the sink. A cut would 
somehow naturally add the weights of certain edges, hence considering all the 
paths from A to D all at once.

Both of these algorithms could be developed but it seems that it would take too 
much time to compute all the distances between A and X for all X using these 
methods. Instead we use something faster and yet intuitive enough.

Somehow, the bigger the probability between two files, the smaller the 
distance. We will use a “shortest path approach” to give the distance. The 
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distance between two files will be the distance of the shortest path. It doesn’t 
take fully into account the “addition” property of the probabilities, but this 
algorithm is fast and robust and still makes sense : the more you have some 
connections, the easiest it is to find a path and the shortest the distance in a 
certain way.

Firstly, let’s define the distance between a and b by Da,b = -log(0.05 + 0.9 * 
(0.6 * Pa,b + 0.4 * Pb,a)) if they are connected by an edge, else, the sum of the 
distances in between the edges of a shortest path connecting A and B.

The formula seems far-fetched at first sight so let’s give a brief explanation : 

- at the beginning, the formula was Da,b = -log(Pa,b). The minus sign (-) is 
here so that the distance is a decreasing function of the probability. The log is 
here because probabilities are objects that you tend to multiply along a path 
whereas you add distances. If the probability to go from A to B is Pa,b and the 
probability to go from B to C is Pb,c then Pa,b * Pb,c represents the probability 
of the path A, B, C. If we had defined Da,b = -log(Pa,b) then Da,c = -log(Pa,b) - 
log(Pb,c) = -log(Pa,b * Pb,c) = -log(Pa,b,c) and this formula would work.

- Pa,b can be null, in that case Da,b = +∞, which is fine in theory, but in 
practice we want to avoid that so we take Da,b = -log(0.05 + 0.95 * Pa,b)

- somehow we want something decreasing with the number of steps in the 
path. If Pa,b = 1 and Pb,c = 1, then Pa,c = 1. But it means that in reality, 
starting form file A, we always go first onto B then onto C. Thus C must be 
further away than B from A. This is done by having 0.9 instead of 0.95. It has 
the same effect than saying Da,b = -log(0.05 + 0.95 * Pa,b) + cste.

- We choose 0.6 * Pa,b + 0.4 * Pb,a instead of Pa,b to take into account the 
symmetric of the graph. Somehow if you go very often from file A to file B, 
then it makes sense to suggest A as a file close to B, though you might prefer 
files X that have a high Pb,x probability.

Results

I recorded the history of navigation from people in my team, on the Xcode 
project (thousands of files). Then I compared at every time the relevance of the 
most recent files and the relevance of the files closest to the file being edited 
(“closest” with respect to the distance in the graph of transition, that I have just 
described).

! !



This chart shows, in percentage, how many times the next file visited by the 
user will be in the top n files in the respective lists. For instance, 75% of the 
time, the next file visited by the user appears in our top 5 (with out distance 
function), but to get the same percentage we need to look in our top 9 with the 
recent files list.

Performing clustering

The cluster “Others”

The most important rule in our clustering strategy is that we want all the files to 
be in at least one cluster. This makes it easier when it comes to choose for a file 
what is the cluster it fits into best for example. The problem with this approach 
is that certain files can’t belong to a working set for many reasons : either the 
file is very “new” and the system doesn’t have enough information on what are 
the related files, or a file is part of a cluster that grows and grows and at some 
point we need to “clean” the working set and so we need to assign another 
working set to the file, ...

For this reason we imagined the working set “Others”. This working set will be 
treated differently than every other clusters. For instance it will not have any 
constraints on its size. At some point certain clusters can merge, so one of the 
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two disappears, but the working set “Others” is different and will always exist. 
In a certain way, “Others” acts like a trash. When a file is added to another 
working set, it is usually taken out of “Others”.

How our clustering method works : we use the distance function we defined 
earlier in our set of files. The 10 files closest to a file (relative to this distance) 
are the 10 most relevant files with respect to this first file. While doing a static 
clustering, we compute for all the files what are the 10 most relevant files. For 
all these 10 relevant files we do the same thing. We now have 10 lists of 10 files 
each. If we find more than 7 files that are in 80 % of these lists then they form a 
cluster. If the cluster found is “similar” to another cluster, then we merge them.

relevant files for A1relevant files for A1relevant files for A1 for A2 for A3 ... for B1

A1 A1 A1

A2 A2 A3 B2

A3 A3 A4 B3

A4 A4 A5 B4

A5 A6 A6 B6

A6 A7 A8 B8

A7 A9 A9 B9

A8 B2 B1 A2

B1 C2 B4 A8

C1 C3 C2 C2

In this example, files A1, A3, A4, A6 are part of most of the lists, so we decide 
to aggregate them.

That being done, some files are not part of any cluster. We compute the list of 
the 10 most relevant files for each of them and treat it as a cluster. We then 
assign the file to the cluster that is the most similar to this latter, if the measure 
of similarity is bigger than a certain threshold. If not, we assign the file to a 
special cluster, the “Others” cluster. Certain measures are described further on 
this report.

Size

Clustering has nothing to do with magic. We could have said there is just one 
big cluster that contains all the files in a project. This would be true and yet 
totally useless. Given the context we are working on, that is to say to find the 
clusters of files that are likely to be used together in a software project, we 
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stipulate that the size of a cluster will be of about 10 files. Making this 
assumption, we will try to make clusters with a size between 6 and 15 files. 
This means that we will not accept clusters containing more than 16 files or 
less than 5 files. Every time we add a file to a cluster, merge two clusters, 
separate a cluster into two, ... we will check that this size rule is respected. The 
working set “Others” is the only one that has no size constraints. 

This explains for the “static” clustering. The incremental clustering is somehow 
based on it, but with additional rules made to address problems that arise 
during user’s navigation, in contrast to static analysis.

Incremental Clustering

One of the main problems is to ensure stability. If we were to recompute all the 
clusters / working sets every time an element of navigation appears (i.e going 
from one file to another) then firstly it can take a lot of computational time, and 
secondly we are not able to ensure stability. When the user goes from one file 
to another within a working sets, we do not wish to recompute all the working 
sets. The primordial question is “What happens when you are going from a file 
‘a’ in a working set A to a file ‘b’ in a working set B ?”

This question, among several other fundamental ones, is answered by our rules 
and the set of functions we have defined to work with the clusters.

Every time we navigate from one working set to another, we could merge the 
working sets together, add the file we come from to the working set we go to or 
reversely add the file we go to to the working set we come from. The choice we 
make is purely based on certain metrics we developed.

Some useful metrics

• measure of similarity of two clusters C1 and C2 = |C1 ∩ C2| / |C1 ∪ C2|

When creating a new cluster, we can wonder if there isn’t already a 
cluster that exists and is similar to it. If so, we might merge them if the 
size rules stay valid.

• score of a file ‘f’ in a cluster C  = |C ∩ L| / |L| where L is the list of files 
relevant to ‘f’.
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When we consider adding or removing a file to or from a cluster, we 
consider both the scores of the file in the ‘new’ cluster and in the ‘old’ 
cluster.

• integrity of a cluster C = #{ file f / L(f) ∩ C > .7 * #C }  / #C

L(f) is the list of files relevant to file f. Before adding or after removing a 
file from a cluster, we can consider whether the cluster is still valid or if it 
will be, and it depends on the score of this function.

Incremental workflow

Another thing worth paying attention to : there are several ways to open a new 
file, one using our working set navigator, and others. When using our working 
sets navigator, the user, without knowing it, gives us an important piece of 
information : he will open file ‘a’ in working set ‘W’. While using other 
navigators, we just know that he is know editing file ‘a’. In case ‘a‘ is part of 
only one working sets, there is no real issue, else we need to think about it 
more thoroughly. So, if there is no explicit information, if ‘a’ is part of the 
current working set, we assume the user is doing intra cluster navigation. Else 
we look for the last working set ‘a’ was used in. If there isn’t any, we look for 
the cluster that fit ‘a’ the best.

Last but not least, because the working set “Others” is special, there are some 
special cases everywhere in the algorithm. So going from working set A to the 
working set Others doesn’t try to take the file you are coming from into the 
working set Others. When we visit a new file, i.e a file that we have never visited 
before, this new file is included in the working set Others. More navigation 
steps from this file to files from another cluster will eventually reinforce the 
probability to go from one 

This section is voluntarily brief on the exact description of the algorithm and 
above all on the different thresholds used, in a non disclosure agreement 
purpose.

! !



Further steps and Critics

Tests

There are many clustering algorithms in the street, and it would be a good idea 
to take some time and test many of them. Also, the algorithm we chose is made 
of plenty of functions with many parameters. Choosing a different distance 
function, changing the threshold parameters, ... all these tweaks that we could 
do would change the results of our algorithm.

One of the most important thing to do would be to record enough data to test 
the algorithms. This is a burning issue. It is not possible to say that an 
algorithm works well when it is not massively tested. The framework that 
records all the transitions from one file to another is already there, but people 
on the team didn’t have much time to use it, so there is very few data. 
Furthermore, we are the team building the new version of Xcode thanks to 
Xcode, so there are new versions everyday and people delete their personal 
data before committing their changes to the trunk. What need to be done is sit 
with someone, look at his at least 2 weeks data history, determine what are the 
working sets manually and test various algorithms on them. And do that for 
more than one person.

Time

Let’s imagine that you work a lot and for a long time on certain files. Then you 
add a new file that needs to be in this working set. Because there is so much 
navigation between the other files, it will take some time for the new file to 
have strong links with the preexisting files. It would be interesting to relax the 
probabilities over time, as if every time you navigate from one file to another, it 
adds +1 to the edge, but at the same time multiply all some other edges (all the 
others or just all the others in the working set) by 0.98 for instance, or find a 
way that follows that intuition.

Another thing that we record is the time that you spend on a file. So there are 
some times you will spend 2 seconds before going to another file, and some 
times where you will do lots of edits and spend 20 minutes on a file before 
going to another one. We don’t use this parameter in our current model but 
adding +1 or +.2 or anything else regarding the time we spend on a file is a 
point of interest.

Memory Management
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The graph of probabilities is currently implemented as a sparse matrix, 
meaning that instead of using a matrix we use hash tables that for a given file 
return another hash table, consisting of the destination file and a number.

This graph can become huge and in order to reduce the footprint of user data 
for each project, it could be interesting to save just the cluster information. One 
way to do that would be to save the list of working sets when the user quits 
Xcode or closes the project, and when he reopens it, it creates a new graph of 
probabilities, and populates it with edges with default values for all the pair of 
files belonging to the same working sets. This would address the first “time” 
problem.

SVN

It would be a great if working sets could be shared among users of a same 
project. There are scores of software engineers working on the development 
tools such as Xcode, and you could be debugging the code of someone else. In 
that case, you would like to know what are the files relevant to the files you are 
editing, and if working sets were shared it would make it easier.
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Conclusion

I was very happy to work at Apple as a Software Engineer Intern. I have learnt a 
lot about the software development process in a leading company in this sector. 

It was also thrilling to explore a domain completely new to me and probably to 
the other IDEs on the market. Clustering, predicting the next move of the user 
and try to help him with the navigation, are two very interesting and passioning 
challenges I had to face.

If the time was too short to make the project go all the way to its end, I hope 
my work will serve in the near future. Nothing is more exciting than seeing the 
features you have developed ship and use them in “real life”.
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