
Object Segmentation Using Graph Cuts Based Active Contours∗

Ning Xu
Beckman Institute & ECE Dept.

University of Illinois
Urbana, IL, USA

ningxu@vision.ai.uiuc.edu

Ravi Bansal
Department of Psychiatry

Columbia University
New York, NY, USA

bansalr@childpsych.columbia.edu

Narendra Ahuja
Beckman Institute & ECE Dept.

University of Illinois
Urbana, IL, USA

ahuja@vision.ai.uiuc.edu

Abstract

In this paper we present a graph cuts based active con-
tours (GCBAC) approach to object segmentation problems.
Our method is a combination of active contours and the op-
timization tool of graph cuts and differs fundamentally from
traditional active contours in that it uses graph cuts to it-
eratively deform the contour. Consequently, it has the fol-
lowing advantages. (1). It has the ability to jump over local
minima and provide a more global result. (2). Graph cuts
guarantee continuity and lead to smooth contours free of
self-crossing and uneven spacing problems. Therefore, the
internal force which is commonly used in traditional energy
functions to control the smoothness is no longer needed, and
hence the number of parameters is greatly reduced. (3).
Our approach easily extends to the segmentation of three
and higher dimensional objects. In addition, the algorithm
is suitable for interactive correction and is shown to always
converge. Experimental results and analyses are provided.

1 Introduction

A natural and popular formulation of object segmenta-
tion is in terms of energy minimization of certain objec-
tive functions. For example, the frame work of active con-
tours [13, 6] minimizes the contour energy E defined as the
sum of external energy and internal energy. The external
energy pulls the contours towards desired image features
while the internal energy helps achieve smooth boundaries.
An early implementation of active contours, called Snakes,
is based on deforming an initial contour at a number of con-
trol points selected along a given initial contour. The de-
formation is directed towards the object boundary by mini-
mizing the energy E so that its local minimum occurs at the
boundary of the object. This implementation has several
disadvantages. First, the Snakes approach the nearest local

∗This work is partly supported by National Science Foundation under
grant ECS-0225523, and is partly completed at Siemens Corporate Re-
search, Inc.

minimum of the initial contour and are therefore prone to
finding a local minimum which in general does not coincide
with the object contour. This leads to sensitivity to initial-
ization, e.g. when there are a large number of local minima
near the initial contour due to image noise or background
clutter. Second, the discretization of the contours into a
number of control points may cause problems with uneven
spacing and self-crossing while the contours are deforming,
and make it difficult to extend the approach to segment 3D
objects. Finally, automatic selection of various parameters
such as the weights in the energy function is still an open
problem.

Many approaches have been proposed to improve the
robustness and stability of Snakes. An inflation force is
defined on active contours so that the model behaves like
a balloon [6]. The active contours then are stopped by a
strong edge but move past a spurious edge which is weak
relative to the ambient inflation force. The GVF Snakes
method introduces an external force called gradient vector
flow (GVF) which is computed in terms of a diffusion of the
gradient vectors of the image [22]. These two Snakes meth-
ods change their external forces to achieve a large capture
range but they still find a local minimum. Geodesic active
contours [5] find a geodesic curve in a Riemannian space
derived from image content. Implicit active shape models
embed contours as the zero level set of a higher dimensional
function and then solve a partial differential equation of mo-
tion [16, 15, 18, 8, 17]. These two approaches eliminate
the problems with uneven control points and self-crossing
and can easily be extended to higher dimensional applica-
tions. However, they still have the problem of local minima.
Dynamic programming is used to extract the globally opti-
mal contour within a certain region [2, 11]. However, these
methods do not scale properly from extracting contours to
extracting surfaces and still have the self-crossing and un-
even spacing problems.

In contrast to the framework of active contours, graph
cuts approaches are applied as global optimization meth-
ods for computer vision problems such as image segmenta-

tion [21, 10, 14]. The image is represented using an adja-
cency graph. Each vertex of the graph represents an image
pixel, while the edge weight between two vertices repre-
sents the similarity between two corresponding pixels. Usu-
ally, the cost function to be minimized is the summation of
the weights of the edges that are cut. The exact solution
can be found in polynomial time. However, this solution
has a bias towards cuts with short boundaries, resulting in
small regions. The normalized cut approach [19] is aimed
at reducing this bias by introducing a cost function called
disassociation, but it also introduces another bias towards
similar weight partition [20]. The minimum mean cut [20]
normalizes the cost function by the length of the cut. How-
ever, the algorithm is slow for planar graphs and NP-hard
for non-planar graphs. Interactive graph cuts approach [3]
uses s− t minimum cut as an optimization method with the
user identifying the object and background regions interac-
tively.

In this paper, we present an approach called graph cuts
based active contours (GCBAC). A key assumption of our
approach is that the desired segmentation contour is a global
minimum within its apriori known size (width) contour
neighborhood (CN, which is defined as a belt-shaped neigh-
borhood region around a contour). The size of the CN
may be specified by the user for a given segment, image
or a class of images according to the characteristics of lo-
cal minima. Thus, the objective of our approach is to find
the closest contour that is a global minimum within its CN,
given an initial contour. The GCBAC algorithm iteratively
replaces a contour with a global minimum within the CN of
the contour until the objective is achieved. At each step of
the iterative deformation, the CN is obtained by dilating the
current contour with the apriori known size. At the same
time, an inner boundary and an outer boundary of the CN
are obtained. The image within the CN is represented by
an (pixel) adjacency graph, and the problem of finding the
global minimum contour within this CN is formulated as a
multi-source multi-sink s− t minimum cut problem on this
graph, by treating the pixels on the inner boundary as multi-
ple sources and the pixels on the outer boundary as multiple
sinks. Since the resulting contour should be long enough
to separate the two boundaries, our approach overcomes the
well-known shortcoming of minimum cut, which is prone
to yield a short boundary.

Moreover, by using graph cuts at each step of contour de-
formation, our approach has the following advantages com-
pared to traditional active contours. (1). It has the abil-
ity to jump over local minima and provide a more global
result. (2). Graph cuts guarantee continuity and lead to
smooth contours free of self-crossing and uneven spacing
problems. Therefore the internal force which is commonly
used in traditional energy functions to control the smooth-
ness is no longer needed, and hence the number of parame-

ters is greatly reduced. (3). Our approach easily extends to
the segmentation of three dimensional(3D) and higher di-
mensional objects. In addition, the proposed approach is
suitable for interactive correction and the algorithm is guar-
anteed to converge after a finite number of contour updates
unless it oscillates between equal capacity solutions.

In the next section, we describe our proposed approach
in detail. Section 3 presents experimental results and com-
parison with other results. Section 4 presents concluding
remarks.

2 Our Approach

2.1 Related graph theory

In this section, we present a graph-theoretic description
of s − t minimum cut which is the basis of our graph cuts
based active contours approach. Let a flow network G =
(V,E) be a connected graph with vertex set V and edge
set E. Each edge (u, v) ∈ E has a nonnegative capacity
c(u, v) ≥ 0. If (u, v) /∈ E, we assume that c(u, v) = 0.
Two vertices in V are distinguished: a source s and a sink t.
A cut (S, T) of the flow network G is a partition of V into
S and T = V − S such that s ∈ S and t ∈ T . The capacity
of a cut is defined as the summation of the capacities of
the edges across the cut, i.e. c(S, T) =

∑
u∈S,v∈T c(u, v).

The s − t minimum cut problem is to find a cut in G that
separates s and t with the smallest capacity. This problem
is very closely related to the max-flow problem in graph
theory. A flow in G is a real-valued function f : V ×V → R
that satisfies the following properties [7]:

1. for all u, v ∈ V , f(u, v) ≤ c(u, v);

2. for all u, v ∈ V , f(u, v) = −f(v, u);

3. for all u ∈ V − {s, t},
∑

v∈V f(u, v) = 0.

The value of a flow f from s is defined as |f | =∑
v∈V f(s, v). In the maximum-flow problem, we are

given a flow network G with a source s and a sink t, and
we wish to find a flow with the maximum value from s to
t. There is an important correspondence between flows and
cuts in networks, as we can see in the max-flow min-cut
theorem as follows:

Theorem 1 (Ford-Fulkerson Theorem [9]) The maxi-
mum flow from a vertex s to vertex t, |f |, is equal to the
value of the capacity c(s, t) of the minimum cut separating
s and t.

With this theorem, the s − t minimum cut problem can
be solved by using existing max-flow algorithms. Several
polynomial-time algorithms for the maximum flow problem
are described in [1]. Experimental comparison of several
different max-flow min-cut algorithms can be seen in [4].

The minimum cut of interest in this paper is required to
separate multiple source nodes from multiple sink nodes.

A simple operation on a graph of interest G in this re-
gard is node identification which identifies a set of nodes
{v1, v2, ..., vn} as a single new node v, deleting self loops,
if any, and merging parallel edges with cumulative capac-
ity, as shown in Fig. 1. In terms of this operation, we have
the following Theorem for the multi-source multi-sink s− t
minimum cut problem:

(a)

v1 v4

v2

v3

v5

v6

1

1

1 1

1

1

1

1 1

1

1

v4

v v5

v6

2

1

2 1

1

1

v4

v v5

v6

1
1

1

1

1

11

1

1

1 1

(b)

Figure 1. Node identification. (a) v1, v2, v3 are
merged into a new node v. (b) Self loops are
deleted and parallel edges are replaced by a
single edge.

Theorem 2 (Multi-source Multi-sink min-cut) The min-
imum cut of graph G which separates a source set
{s1, s2, . . . , sn} and a sink set {t1, t2, . . . , tm} is exactly
the s − t minimum cut of the graph that results after iden-
tifying s1, s2, . . . , sn as a new source s and identifying
t1, t2, . . . , tm as a new sink t.

Proof. There is a one to one mapping between
a cut (S, T) in the original graph G that separates
{s1, s2, . . . , sn} from {t1, t2, . . . , tm} and s−t cut (S′, T ′)
in the graph G′ that results after identifying the source set as
s and the sink set as t, where S = S′− s+{s1, s2, . . . , sn}
and T = T ′ − t + {t1, t2, . . . , tm}. The capacities of the
two corresponding cuts are the same because the process of
node identification only deletes self loops which are not on
the cuts. So if a cut (S′, T ′) is an s − t minimum cut in
G′, its corresponding cut (S, T) is a minimum cut in G that
separates the source set and the sink set.

With the help of this theorem, we can use s − t min-
imum cut algorithms to solve the multi-source multi-sink
minimum cut problem by simply identifying the multiple
sources as a single source and multiple sinks as a single
sink, respectively.

2.2 Graph cuts based active contours
2.2.1 Overview
The graph cuts theory discussed above provides us with a
method to compute the globally optimal partition of an im-
age after we transform it into an edge capacitated graph
G(V,E). One such transformation is as follows. Each pixel
within the image is mapped to a vertex v ∈ V . If two pixels
are adjacent, there exists an edge (u, v) ∈ E between the
corresponding vertices u and v. The edge weight c(u, v) is
assigned according to some measure of similarity between
the two pixels: the higher the edge weight, the more similar
they are.

Each contour that partitions the image into two parts
S and T corresponds to a cut (S, T) on the graph. The
cut corresponding to a desired object contour is in gen-
eral not the global minimum among all possible cuts on the
graph (for example, the contour of another, smaller object
might correspond to a cut with smaller capacity). How-
ever, as explained in section 1, the desired object contour
is a global minimum within its contour neighborhood (CN).
Since there might be many this kind of global minima in the
image, an initial contour is required to distinguish them, and
the objective of our approach is to find the closest contour
that is a global minimum within its contour neighborhood.
Given an initial contour, our algorithm consists of the fol-
lowing steps:

1. Represent the image as an adjacency graph G.
2. Dilate current boundary into its CN with an inner bound-
ary and an outer boundary (Fig. 2).
3. Identify all the vertices corresponding to the inner bound-
ary as a single source s and identify all the vertices corre-
sponding to the outer boundary as a single sink t.
4. Compute the s − t minimum cut to obtain a new bound-
ary that better separates the inner boundary from the outer
boundary.
5. Return to step 2 until the algorithm converges.

dilation

Extract sinks and sources

Figure 2. Using dilation to obtain the CN of a
contour and the inner and outer boundaries
of the CN. The inner and outer boundaries
are treated as the sources and sinks, respec-
tively, in the corresponding graph.

2.2.2 Connectivity and edge weights
We represent the image as an 8-connectivity graph G(V,E),
which means each vertex v ∈ V in G, corresponding to a
pixel p, has edges connecting it to its 8 neighboring ver-
tices, which correspond to the 8 neighboring pixels of p.
Fig. 3 presents a simple example of a homogenous area that
shows why 8-connectivity is better than 4-connectivity. Fig.
3(a) and Fig. 3(b) are 4-connectivity graphs while Fig. 3(c)
and Fig. 3(d) are 8-connectivity graphs, each edge having
capacity 1. The dotted edges on each graph represent the
edges on a cut. The contour corresponding to the cuts in
Fig. 3(b) and Fig. 3(d) is better than the contour corre-
sponding to the cuts in Fig. 3(a) and Fig. 3(c) because the
former has a shorter length. The two cuts in Fig. 3(a) and

Fig. 3(b) have the same capacity 6. It means that if we use
4-connectivity, the two resulting cuts are indistinguishable.
However, with 8-connectivity, the two cuts in Fig. 3(c) and
Fig. 3(d) have different capacities, 15 and 11, respectively.
This means that the cut with the shorter length has less ca-
pacity as is desired for homogeneous areas.

(a) (b) (c) (d)

Figure 3. 4-connectivity and 8-connectivity
graphs for a homogeneous area. The cuts
are represented using red dotted edges. The
cuts have the same capacity in (a) and (b) but
different capacities in (c) and (d).

Besides selecting of the type of connectivity, edge
weights assignment is also very important. In our im-
plementation, we use c(i, j) = (g(i, j) + g(j, i))6,
where g(i, j) = exp(−gradij(i)/maxk(gradij(k))), and
gradij(k) is the image pixel intensity gradient at location
k in the direction of i → j. This weight assignment method
leads the active contours to high gradient edges and consid-
ers direction of the gradients.

2.2.3 Dilation
The dilation process in step 1 has several objectives. First,
the dilation process generates a CN of the current contour,
and makes our algorithm capable of jumping over local
minima within this CN. Second, if the CN is a homogeneous
area, the globally optimal contour should be the convex hull
of the inner boundary, since it will cut the least number of
edges in the corresponding graph. This property is help-
ful when the background is simple and the initial contour is
much larger than the real object contour. Third, the dilation
process generates an inner boundary that corresponds to the
multiple sources in the corresponding graph. These multi-
ple sources are identified as a single source, which is always
contained in the S part of the resulting s − t minimum cut.
Although the minimum cut is prone to yield a small region,
the use of node identification helps us to avoid this short-
coming as the resulting boundary in each step should be
bigger than the inner boundary of the previous one.

The dilation process in our approach consists of a few
single binary dilation steps, whose structuring element is a
3 × 3 matrix with all entries set to 1 in the 2D case or a
3 × 3 × 3 tensor of 1 in the 3D case. Other structuring el-
ements can also be used. The number of single dilations in
each step (also referred to as step size in this paper), deter-
mines the size of the CN. The step size is a very important
parameter and is selected based on two factors: the size of

� �

������

� �

������

(a) (b)

Figure 4. Step size selection. The energy
function in (a) is much smoother than the en-
ergy function in (b). Point A is the desired
minimum while point B is not desired even
though it has a smaller energy value. Step
size should be selected so as to avoid local
minima but not miss the desired solution A in
favor of a global solution B.

the object to be segmented and the amount of noise in the
data. Large size objects may have large step size. For noisy
images, a large step size is required to make the active con-
tour break away from the many local minima near the ob-
ject contour. However, if the step size is too large, the active
contours may skip the real object contour. Fig. 4 shows the
tradeoff in selecting step size. Fig. 4(a) shows clean data
and Fig. 4(b) shows noisy data. Point A is the desired min-
imum point, and point B is another local minimum, having
smaller energy than point A. For the energy function in Fig.
4(a), if we select a small step size, the active contours will
find point A for a large range of initializations. However,
for the energy function in Fig. 4(b), the active contours will
probably get stuck at one of those local minima. On the con-
trary, if we select a very big step size for both cases, point B
will be found, which is not desired. In our implementation,
we select the step size manually according to the size of the
object we want to segment and the noisiness of the data.

2.2.4 Convergence
The proposed approach is guaranteed to converge by the
following theorem:

Theorem 3 (Convergence Theorem) Within a finite data
set, the graph cuts based active contour will either converge
or oscillate between several results with the same capacity
after finite iterations.

Proof. Let Ci be the capacity of the result Ri in the ith
iteration, then Ci+1 ≤ Ci, i = 1, 2, · · · , because in each
iteration, the result is globally optimal within the area of in-
terest. Finite data yields a finite number of different results
Ru, 0 < u < N . Since the dilation process and the edge
weights are well defined, we should have Ri+k = Rj+k,
for k = 1, 2, · · · , if Ri = Rj . If the algorithm does not
converge after N iterations at least one result Ru will ap-
pear twice, following which the sequence between the two

Ru will repeat. Also, since Ci+1 ≤ Ci, i = 1, 2, · · ·, the
capacity of each Ri within this sequence will be the same.

So if a boundary reoccurs, the algorithm terminates.

2.2.5 Interactive correction
If the final boundary is not satisfactory, the user can correct
it interactively. The user can click a point that the bound-
ary must pass through and the algorithm updates the source
set and the sink set accordingly. Three situations are distin-
guished based on the user clicked point:

1. The input point lies between the inner boundary and
the outer boundary.

2. The input point lies inside the inner boundary.
3. The input point lies outside the outer boundary.

(c) (d)

(b)(a)

(c) (d)

(b)(a)

(c) (d)

(b)(a)

Figure 5. Updating sources and sinks to in-
corporate an input interactively supplied by
the user. The yellow region indicates con-
tour neighborhood (CN), the blue curve indi-
cates the sources and the green curve indi-
cates sinks.

In each case, the algorithm updates the sources and sinks
so that the resulting boundary is forced to pass through the
input point (Fig. 5). In each iteration thereafter, this input
point lies in the dilated CN and is treated as an input point of
situation 1. Therefore, the final boundary should also pass
through this input point.

2.3 Comparison with traditional active contours

2.3.1 Cost function
The proposed GCBAC approach has a much simpler energy
function than the traditional active contours. A cost func-
tion often used by the traditional active contours is E =
Einternal + Eexternal = αEtension + βErigidity + Eext,
where α and β are weighting parameters that control the
curve’s tension and rigidity, respectively. The internal en-
ergy is designed to hold the curve together and to keep it
from bending excessively. This allows control of the ob-
ject shape, but requires careful adjustment of the weights
for different kinds of object boundaries, or even at different
stages of deformation. In our approach, no internal energy
is explicitly needed. The graph cuts guarantee the continu-
ity of the resulting contour. The absence of internal energy
makes it very easy to extend our algorithm to segment 3D

and even higher-dimensional objects. It is difficult to anal-
ogously generalize the traditional active contours to higher
dimensions.

The external energy in our approach is derived from the
image and represented by edge weights on the correspond-
ing graph. Through the assignment of edge weights and
selecting different connectivities (for example, constructing
an edge between each pair of vertices), the cut based meth-
ods are able to take more image information into account
than captured in the external energy in traditional active
contours approaches.

2.3.2 Final contour
The final contour resulting from our approach is globally
optimal within its CN, whereas the traditional active con-
tours provide a locally optimal contour. Since minimum cut
is computed on a graph where each vertex corresponds to a
pixel in the corresponding image, the resulting contour does
not have any problem due to uneven spacing that accompa-
nies the use of control points for representing the contour.
Further, the final contour provided by the traditional active
contours algorithm might have the problem of self-crossing
(Fig. 6). This situation will not occur in our approach as the
minimum cut will partition the graph into two parts instead
of three.

A

B

C

Figure 6. Self-crossing problem. The red con-
tour self-crosses and segments the image
into three parts: A, B and C.

3 Experimental Results

In this section, we present our experimental results and
compare them with the results of GVF Snakes. The results
demonstrating different aspects are presented in different
subsections.

3.1 Insensitivity to initialization

Fig. 7 shows a synthetic image containing a gray,
diamond-shaped object constructed to demonstrate the in-
sensitivity of the algorithm to the initial contour. Different
rows correspond to the use of different initial contours. The
leftmost image in each row shows the initial contour and
the rightmost image shows the final contour. The middle
two images depict the intermediate stages of GCBAC al-
gorithm. Fig. 8 shows an application to lung nodule seg-
mentation. The images are extracted from a CT volume of

Figure 7. Experimental results on synthetic
images show that the proposed approach is
insensitive to initial contours. The leftmost
image in each row shows the initial contour
and the rightmost image shows the final con-
tour. The intervening images show how the
active contours deform.

Figure 8. GCBAC used for lung nodule seg-
mentation. The green polygon in each image
shows the initial contour and the red contour
shows the final contour.

a patient’s lung. Four different initializations are shown in
green, and the corresponding final contours are shown in
red.

However, if an initial boundary is far from the object
boundary, inside or outside, it is still difficult for our ap-
proach to find the real object boundary.

3.2 Discontinuities and noise

Fig. 9 demonstrates that the GCBAC algorithm is able to
handle large edge gaps on object boundary as well as noise
in the data. The left image in the first row of Fig. 9 shows a
synthetic image of a triangle-shaped object with large gaps
in the boundary. The left image in the second row shows
an image with scattered noise points. The left image in the
last row is corrupted by the additive Gaussian noise. The
rightmost image of each row shows the final contour. The
middle two images depict the intermediate stages.

Fig. 10 shows an application to lung nodule segmenta-
tion. The nodules have discontinuities on their boundaries.
Initializations are shown in green, and the corresponding fi-
nal contours are shown in red.

Figure 9. Experiments with an image contain-
ing edge discontinuities and noise. The left-
most image in each row shows the initial con-
tour and the rightmost image shows the final
contour. The intervening images show how
the active contours deform.

Figure 10. Application to lung nodule seg-
mentation. The green polygon in each image
shows the initial contour and the red contour
shows the final contour. Both nodules have
discontinuities on their boundaries.

3.3 Higher dimensions

Fig. 11 shows the application of GCBAC to segment 3D
objects. A synthetic object is shown in Fig. 11(a). The ini-
tial boundary is a sphere as shown in Fig. 11(b). Fig. 11(c)
through (e) show intermediate results. The final resulting
surface is shown in Fig. 11(f).

3.4 Interactive corrections

The first row of Fig. 12 shows the interactive correction
procedure applied to a triangle with gaps in its boundary
and an initial contour of Fig. 12(a). The resulting contour
without correction is shown in Fig. 12(b). However, this
is not the desired result. By accepting a user clicked point,
marked with yellow circle in Fig. 12(c), our algorithm con-
tinues and obtains a satisfactory result shown in Fig. 12(d).
Fig. 12(e)-(h) show our results on a real image. Fig. 12(e)
is the original image with an initial boundary. Fig. 12(f)
shows the resulting boundary without correction. Since the
resulting pepper contour is not satisfactory, the user clicks
two points one after another, marked as yellow circles, to
guide the active contours to the desired results. Fig. 12(g)

(a) (b) (c)

(d) (e) (f)

Figure 11. Experimental results for a syn-
thetic 3D object. (a): 3D object. (b): Initial
surface. (c)-(e): Intermediate resulting sur-
faces. (f): Final result.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Interactive corrections. The left-
most image in each row shows the initial con-
tour. The yellow circles are the correction
points clicked by the user to guide the defor-
mation of the active contours. The rightmost
image shows the final results.

shows the result after first correction and Fig. 12(h) shows
the final result after both corrections.

3.5 Changes in contour topology

Our algorithm is capable of changing the topology of the
initial contour during deformation. A simple example is
shown in Fig. 13. Changing topology is desired in some
instances but not in others [12].

3.6 Comparisons with GVF snakes

We compare our results with those obtained using the
traditional active contours, specifically, the GVF Snakes,
which have a large capture range and can move into bound-
ary concavities. We use the GVF implementation avail-
able at http://iacl.ece.jhu.edu/projects/gvf/. We select the
parameters of the GVF Snakes as follows: µ = 0.1, Itera-
tion count= 200 (for computing the gradient vector field),

(a) (b) (c) (d)

Figure 13. A simple example of topology
changes in the active contour during defor-
mation. (a) Original image and initial contour.
(b), (c) Intermediate results. (d) Final contour
with a different topology.

(a) (b) (c) (d)

Figure 14. Comparison with GVF Snakes for
three real images. Column (a) Initial bound-
ary for GVF Snakes. (b) Final result from GVF
Snakes. (c) Initial boundary for GCBAC. (d)
Final result from GCBAC. Note that the initial
contour for GVF in the third row is very accu-
rate.

α = 0.05, β = 0, γ = 1, κ = 0.6, Dmin = 2, and Dmax
= 4. Fig. 14 shows the results of our approach and GVF
Snakes approach for the same real images. Note that the
initial contours provided for GVF Snakes are more accurate
than these for GCBAC.

3.7 Running time analysis

We implement the excess scaling preflow-push algo-
rithm as described in [1] to solve the s − t minimum cut
problem. Without using sophisticated data structures, the
algorithm achieves the running time of O(nm + n2 log U),
where n is the number of nodes, m is the number of edges,
and U is the largest edge weight. However, the simple
topology of the graph used in GCBAC makes the algorithm
run much faster in practice. By obtaining the best polyno-
mial fit to observed data, the minimum cut algorithm used
in GCBAC has running time of O(n1.2). In Fig. 15, the run-
ning time is shown as a function of the number n of nodes.

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

n

tim
e

(s
ec

on
d)

sample points
O(n2)
O(n1.2)
O(n1)

Figure 15. The observed running time of the
minimum cut algorithm used in our approach
is O(n1.2). The performance levels of O(n) and
O(n2) are shown, respectively, as references.

4 Conclusions and Discussion

We have presented a graph cuts based active contours
(GCBAC) approach to object segmentation. First, we trans-
form a multi-source multi-sink minimum cut problem into
a single s − t minimum cut problem. Then, the problem
of finding desired segmentation contour is formulated as
that of finding the closest contour that is a global minimum
within its contour neighborhood (CN), given an initial con-
tour.

A drawback of our algorithm is that we must construct
the graph with appropriate pixel connectivity and edge
weights. An example of the need for appropriate topol-
ogy selection is illustrated by the fact that the 8-connectivity
graph may result in smoother curves than the 4-connectivity
graph, but the 8-connectivity graph still has limitations in
homogeneous image areas. It will be interesting to devise
a strategy for constructing the graph such that in homoge-
neous areas a cut of shorter length has a strictly smaller ca-
pacity. Other future problems include: how to incorporate
texture information into our algorithm so that both color and
texture information are considered simultaneously, how to
extend our algorithm to segment multiple objects, and how
to determine when our algorithm should allow changes in
topology.

References

[1] R. K. Ahuja, T. Magnanti, and J. Orlin. Network Flows:
Theory, Algorithms and Applications. Prentice Hall, 1993.

[2] A. Amini et al. Using dynamic programming for solving
variational problems in vision. IEEE Trans. on PAMI, 12(9),
September 1990.

[3] Y. Boykov and M. Jolly. Interactive graph cuts for optimal
boundary and region segmentation of objects in n-d images.
The 8th ICCV, 1:105–112, July 2001.

[4] Y. Boykov and V. Kolmogorov. An experimental com-
parison of min-cut/max-flow algorithms for energy mini-
mization in vision. 3rd. Intnl. Workshop on Energy Mini-
mization Methods in Computer Vision and Pattern Recogni-
tion(EMMCVPR), pages 359–374, Sept. 2001.

[5] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active con-
tours. Proc. 5th IEEE Int. Conf. on Computer Vision (ICCV),
pages 694–699, 1995.

[6] L. D. Cohen. On active contour models and balloons.
CVGIP:Image Understanding, 53(2):211–218, March 1991.

[7] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Al-
gorithms. McGraw–Hill Companies, 1990.

[8] O. Faugeras and R. Keriven. Variational principles, sur-
face evolution, pde’s, level set methods, and the stereo prob-
lem. IEEE Transactions on Image Processing, 7(3):336–
344, March 1998.

[9] L. Ford and D. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

[10] D. Forsyth and J. Ponce. Computer Vision: A Morden Ap-
proach. Prentice-Hall, 2002.

[11] D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos. Dy-
namic programming for detecting, tracking, and matching
deformable contours. IEEE Trans. on PAMI, 17(3), March
1995.

[12] X. Han, C. Xu, and J. Prince. A topology preserving de-
formable model using level sets. Proceedings of the 2001
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2:765 –770, Dec. 2001.

[13] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. International Journal of Computer Vision,
pages 321–331, 1988.

[14] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts? ECCV (3), pages 65–81, 2002.

[15] R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape modeling
with front propagation: A level set approach. IEEE Trans.
Pattern Anal. Mach. Intell., 17(2):158–175, 1995.

[16] S. Osher and J. Sethian. Fronts propagating with curvature
dependent speed: algorithms based on hamilton-jacobi for-
mulations. Journal of Computational Physics, 79:12–49,
1988.

[17] N. Paragios, O. Mellina-Gottardo, and V. Ramesh. Gradient
vector flow fast geodesic active contours. The 8th ICCV,
1:67–73, July 2001.

[18] J. Sethian. Level Set Methods and Fast Marching Methods.
Cambridge University Press, 2 edition, 1999.

[19] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE CVPR, June 1997.

[20] S. Wang and J. Siskind. Image segmentation with minimum
mean cut. The 8th ICCV, 1:517–524, July 2001.

[21] Z. Wu and R. Leahy. An optimal graph theoretic approach
to data clustering: Theory and its application to image seg-
mentation. IEEE Trans. on PAMI, 15(11):1101–1113, 1993.

[22] C. Xu and J. Prince. Snakes, shapes, and gradient vec-
tor flow. IEEE Trans. on Image Processing, 7(3):359–369,
March 1998.

